Enhancement Proposal

Super Mario ... Oops [mean Tux!

Gabriele Cimolino, Jack East, Meryl Gamboa, Tyler Searl,
Matt Skoulikas, Stefan Urosevic

2017-12-1

Contents

Abstract 3
Enhancement Proposal 3
Motivation for Feature e e 3
Cheat Menu e e e e 3
Possible Approaches L 3
Temporary Shop« . e 3
Persistent Shop 5
SAAM Analysis 6
Interactions with Subsystems Lo 7
Effects on Architecture L L 7
Effects on Non-Functional Requirements & Stakeholders 7
Performance L 7
Evolvability 8
Maintainability oL 8
Modifiability 8
Testability e 8
Testing e 9
Chosen Implementation 10
Use Cases v v v v e e 10
Sequence Diagrams oL e e 11
Sequence Diagram: Saving the Shop 0. 11
Sequence Diagram: Buying a New Item 11
Risks . . . o o e e 12
Implementation Process & Reflection 12
CONCUITENCY .« .« v v v vt i e e e s e e e s e e 12
Team Issues L oL e 13
Limitations of Reported Findings 13
Lessons Learned e e 13
References 15
Dictionary 15
List of Figures
1 Conceptual Architecture Diagram: Temporary Shop 4
2 Conceptual Architecture Diagram: Persistent Shop 5
3 SAAM Analysis Diagram oL e 6
4 Understand Dependency Graph oo 7
5 Unexpected Behaviour from Shop Cosmetic 9
6 Use Case Diagram o o e 10
7 Sequence Diagram: Saving the Shop L . 11
8 Sequence Diagram: Buying a New Item 12

Abstract

In assignment 2 we proposed the addition of a shop which would sell cosmetic items and gameplay
bonuses to the player. We went back to our conceptual architecture for SuperTux and determined two
possible implementation strategies for this feature. The two were compared, by means of a SAAM
analysis, in terms of their non-functional requirements and the impact that each approach would have
on the interests of the game's stakeholders. Having decided on the Persistent Shop, we implemented
the feature and explored its implementation and interactions with the rest of the game using the
techniques which were used to create our revised conceptual architecture and better understand how
the game works. Finally, our impressions of the process are explored.

Enhancement Proposal

The feature which we proposed in assignment 2 is a shop where the player can purchase new
sprites, called cosmetics, new sounds, and extra abilities, called Shop Moves, as well as the normal
bonuses available in the game by picking up the flowers placed throughout SuperTux's levels. We've
considered two possible implementations of this feature and chosen one which we've implemented.
This report will detail the process that we followed in its creation and give our impressions of that
process itself.

Motivation for Feature

The motivation for this feature was to give new purpose to the coins collected while playing the
game. In its current form Tux has no use for coins other than as a currency with which the player pays
for respawns when Tux dies, and as a metric for the player's completion of any level. These features
certainly justify the existence of coins in the game; however, they lack any incentive for new players
to engage with the mechanic. Our hope is that the Shop system will provide the desired incentive by
creating a way to reward the player for their diligence in collecting this currency.

Cheat Menu

Currently, the feature which most closely resembles what we had in mind is the cheat menu,
which offers bonuses to the player from a menu in the world map. This feature, however, is only
accessible if the game is run in debug-mode, which needs to be specified at runtime by setting the
debug-mode flag. This feature, although similar to what we wanted, is difficult to use and potentially
game breaking since it can be used without restriction, making the game much easier. For these
reasons we believe that the Shop system would be an improvement to the game that would make the
game more enjoyable without debasing the designers' vision for how the game should be played.

Possible Approaches

After some time spent with the SuperTux source files, we drafted two possible implementations
of the Shop.

Temporary Shop

Conceptual Architecture (Temporary Shop)

Gameplay Systems

Physics >

Engine Functions

. Human Interface
(Renderer 1(Addons 1(Audio 1(Devices 1

. -

hJ ¥ l

Core Systems

Legend

_—
Component
Dependency

Figure 1: Conceptual (impact) architecture diagram of Temporary Shop implementation with new
systems and dependencies marked in red

The implementation which we considered first is one which we've called the Temporary Shop
because it would function much like the cheat menu in that it would allow the user to buy Shop Items
and use them for the rest of their game session. Once the player exits the game, the Shop Items
which they have purchased are no longer available upon returning to the game and must be purchased
again in order to continue being used. Since this implementation of the Shop would reinitialize itself
at runtime, with no long term retention of purchases, it could be implemented as a subsystem of
Gameplay Systems.

This implementation would therefore only require modifications to Engine Functions and Gameplay
Systems in order to add a new input for the currently selected Shop Move, add the Shop Menu to the
world map menu, and to make the necessary modifications to the already present systems which would
make use of the Shop. In terms of its dependencies, since this implementation allows the Shop to be
a subsystem of Gameplay Systems, only a single codependency between Game Logic and the Shop
would be required. The Shop would depend on Game Logic for information about the current state
of the game, such as the number of coins the player has, and Game Logic would depend on the Shop
to make selections from the Shop Menu and to get information about which Shop Items have been
purchased and which are selected for use. The Shop needs no, and often cannot have, interactions
with Editor because the Shop is only available from SuperTux's Story Mode, which cannot be used
concurrently with the Editor, and requires none of the other functionality that Editor provides, such
as the functions that extract information from objects that inherit from GameObject.

The Shop's implementation makes use of two design patterns; these being the singleton and tem-

plate patterns. As well, our intention was to make use of the facade pattern when implementing the
Shop, such that the Shop object would be the system's facade and the Shop Menu would be another
way of interacting with that facade. However, because of how SuperTux's menu system works and
the coding conventions which were established in all of the other menus' implementations, this plan
was scrapped in order to make the Shop Menu's implementation more consistent with the rest of the
menu system and to avoid creating unnecessary dependencies in the Shop.

A singleton pattern is used by the Shop object itself. The singleton pattern ensures that only a
single instance of a class exists at any given time[2]. SuperTux already makes use of this pattern in
its abstract Currenton class, the class from which all of the system management objects like Sound-
Manager and Editor inherit, which acts as a global variable storing an instance of the concrete child
class. This allows any object that depends on Shop to call its current function to get a reference to
the current instance of the Shop.

The template pattern is used by the FlipLevel Transformer object, which the Shop needs to be able
to perform the Flip Move. The FlipLevelTransformer inherits from the abstract class LevelTrans-
former, a template for two functions called transform and transformSector. These functions are used
to transform a SuperTux level during play and FlipLevel Transformer's implementation specifies that
the level should be inverted when its transformSector function is applied to it. In this way, similar level
transformation objects could be created and used as Shop Moves to give the player other interesting
new gameplay options that allow for complex strategies involving interactions between Shop Moves
and other game mechanics.

Persistent Shop

Conceptual Architecture (Persitent Shop)

Gameplay Systems

lIIHHHHH%HIIl lIIIEHHHIIIIl

!

Engine Functions

: Human Interface
{ Renderer }(Addons l(Audio l(Devices 1

Shop Menu
Shop ltem
) 4 v l

> Core Systems

— Physics «>

Shop

Legend

_
Component
Dependency

Figure 2: Conceptual architecture diagram with Persistent Shop implementation

The Persistent Shop approach is a variant on the Temporary Shop, allowing the game to save
information about the Shop to be reloaded during initialization. Initially we did not believe that we
would be able to implement this feature because we believed that it would require the development of a
new type of save file specifically for the Shop. The way in which SuperTux saves the player's progress
is a complex system involving abstracted file system functionality on top of PhysFS, the external
resource management system it employs. Adapting this functionality for a new purpose, without
much understanding of how the system currently handles this problem, did not seem possible within
the time constraint. This was the reason for the distinction between approaches since we believed
that one way was feasible while the other wasn't. However, after fully implementing the Temporary
Shop we realized that the creation of a new save type was not necessary if we made modification to
the current game save process to include Shop information in the player's save file.

This implementation of the Shop would have the same codependency with Game Logic as the
Temporary Shop, visualized in the diagram as a codependency with Game Logic's parent component
Gameplay Systems, as well as a new dependency on Core Systems to grant access to the objects
involved in the saving and loading process. When the game is saved, the Shop is passed a Writer
object which it uses to add information about the Shop to a predetermined section of the player's
save file. Similarly, when the player's save file is loaded the current instance of the Shop is passed
a ReaderMapping object which it uses to extract Shop information in much the same way. This is
the approach that SuperTux already takes for saving information about the Player Status object and
about each of the game's levels.

SAAM Analysis

Conceptual Architecture (SAAM Diagram)

Gameplay Systems
i % - Player Control
PhySICS - Singleton Management

- Button Configuration
- Menu System

P S]

<

- Controller Input Engine Functions

‘ Renderer ‘ ‘ Addons ‘ ‘ Audio Human Interface

Devices
[- Save)
‘ - Load Core Systems ‘
Legend

_—
=
Caontrol Flow Data Flow

Figure 3: Diagram of our conceptual architecture with the data flow and control flow of dependencies
shown and functionality required to implement the Shop grouped in its containing subsystems.

Once we had defined the two approaches that we believed were most sensible given the established
architectural and coding style, we performed a SAAM analysis by comparing the changes that would
needed to implement the Shop in these two ways and the effects that these changes would have on
the system in terms of its non-functional requirements and stakeholder interests.

Interactions with Subsystems

Hﬁﬁxhﬁﬁhuﬁxhﬁhhﬁhh‘ 28/7
Core Systems — 21/ 559;\“\.
102471 _—= TTT—— T
— 165 /1907 Gameplay Systems

Physics B Engine Functions = "

|a/30

Shop |#————

Figure 4: The Understand dependency graph generated when the Shop source files are added to our
Understand architecture.

When this feature was proposed, we believed that this sort of architectural change would require
changes to and coupling with potentially every subsystem in our conceptual architecture. However,
upon inspecting where these changes would be required and determining what sorts of changes were
feasible and consistent in style with the way that the rest of the game is implemented, we realized that
almost all of these modification would be most appropriately made to the systems in the Gameplay
Systems subsystem. This means that, instead of being as highly coupled as we anticipated, we were
able to implement the Shop with the modification of only two subsystems, Gameplay Systems and
Engine Functions, and coupling with only Gameplay Systems and Core Systems. The ability to create
such a cohesive and sparingly coupled Shop subsystem allowed us to implement these features without
changing the system's architecture, since it could be implemented in much the same way as Physics
is, while having minimal effects on SuperTux's quality requirements.

Effects on Architecture

The Shop, even with the ability to save and load, only requires two dependencies which are
extremely common for similar systems to have. Much of the functionality found in Gameplay Systems
have similar dependencies on the subcomponents of Gameplay Systems, such as the menu system or
the world map, and functionality in Core Systems, such as loading resources. Adding such a feature
would not require changes to the system's architecture at all and would be indistinguishable from
many other systems in terms of its dependencies.

Effects on Non-Functional Requirements & Stakeholders

The only stakeholders whose interests would be affected by the introduction of the Shop into
SuperTux are the developers and the players. Editors would only be indirectly affected, by players
who use Shop Items in their levels, and so the Shop's effects on their interests cannot be considered
with much certainty. These are some of SuperTux's quality requirements and the Shop's potential
impact on them.

Performance

There is no significant performance difference with the Persistent Shop or the Temporary Shop.
In fact, both implementations have nearly no effect on performance.

Evolvability

The Persistent Shop implementation requires a whole new subsystem to make it work properly.
This is beneficial because it means that all the resources the Shop needs are merged into its own
component. However, the Persistent Shop requires changing the save file format to enable cosmetics,
bonuses, and moves to stay on Tux even after a gameplay session is ended. Adding a new component
also increases coupling of the system and so changes to either of the systems on which the Shop
depends might break it, reducing the system's evolvability. This places a constraint on the developers
when considering changes to those systems in the future; however, the Shop would not be the only
system to use that functionality in that way so this constraint already existed.

The implementation of the Temporary Shop involves creating a subsystem inside the gameplay
systems component, which increases the cohesion of the system. Changes to subsystems other than
Gameplay Systems should have no effect on the operations of the Shop and so the evolvability of the
system remains unaffected.

Maintainability

The only maintenance required for the Persistent Shop implementation is adding new items to
the store. If, in the future, a new item should be added then the item needs to be created in the code
and the Shop would then need a new menu option to buy that new item. However, if maintenance
needs to be done to Core Systems, the system in charge of various libraries, some Shop functionality
would need to be rewritten to account for these changes. This maintenance, however, would be
no different than the maintenance performed on the other affected subsystems and should therefore
require no extra effort from the developers.

The Temporary Shop would not need to be maintained since it would have no dependencies outside
Gameplay Systems and the dependencies which it would have are so commonly used that it certainly
would not be the only system to be affected if changes were required. If a change were to be made
to one of these systems then maintaining the Shop would be no different than maintaining any other
affected subsystems, since it makes use of its dependencies in standard ways, and so the maintainability
of game remains unaffected.

Modifiability

Since the Shop was built to use some pre-existing items, it was built in such a way that encourages
the addition of new items. It is very easy to add items to the Shop. All someone needs to do is create
the item in the code and then add an appropriate entry in the Shop menu to select that item. On the
other hand, this implementation took longer than other approaches we looked at. One of the reasons
for this is that it required the alteration of the save file format. The new save file format was used to
enable persistent items to to work properly.

The Temporary Shop requires no new save file format and so development is much faster and
cheaper. This, however, means that to enable saving in this implementation, a rewrite of the Shop,
or major parts of the game, would be in order.

Testability

Because the implementation of the Persistent Shop can be done with such low coupling, testing
would be simple because of the few, highly standard, uses of functionality located outside the Shop.
The only functionality which is required by the Shop from outside systems is the ability to save and

load information about the Shop and to gather information about the current game state. All of
these uses can be found already in systems other than the Shop and so it is known beforehand what
correct operation should look like. The Shop's uses of these other systems can therefore be verified
by checking its results against the results of other systems.

Testing the operations of the Temporary Shop implementation would be even simpler, mostly
because its only dependency would be on Game Logic which would make much heavier use of it than
it would of Game Logic. The functionality that the Shop requires of Game Logic is the ability to
get and set Player Status values. This means that its requirements are simple and examples of this
functionality being correctly used are already common in the sources. The functionality that Game
Logic requires of the Shop is not as simple in comparison but it is easily testable from within the Shop
since its operations are almost entirely focused on managing its collection of Shop Items, where any
errors would be made apparent by invalid or incorrect Shop Item values.

The ease with which the Shop's functionality can be tested ensures that bugs are likely to be
noticed and fixed before the player has a chance to encounter them. The Shop's testability therefore
makes it less likely that the player's experience of the game will be affected by bugs introduced by
the Shop, negatively affecting the player's interests.

Testing

Figure 5: An real example of unexpected behaviour of a Shop resource encountered during testing

When implementing a shop feature in a game like this, testing everything properly is very
important. The most important thing to test is how the Shop interacts with the rest of the game
and making sure that the Shop does not remove any pre-existing functionality. Since we reference
some code that already exists in the program in our Shop, testing this functionality of the Shop is less
important because it is unlikely to be where potential bugs would be introduced. To make sure all the
interactions work correctly, we would use integration testing. Some examples about what we would
test include, changing Tux's sprite in the store, changing the sounds Tux uses, whether the player can
activate the move they bought from the Shop, and whether the save game functionality still works
after the Shop is used. These are all examples of how the Shop would interact with the rest of the
game. Some examples of the Shop functionality being tested include how the move actually works,
the functionality within the Shop, and whether the in game bonuses still work. These are things that
are not too important to test because they are things that either already exist in the code, and so we
can assume they already work, or they only matter within the Shop so if they don't work, they won't

break the rest of the game. This is not to say these examples should not be tested; just that testing
these examples is not as important as testing the interactions between the Shop and the game.

More of this sort of testing would be required again if development of the Shop were to continue to
the point that this feature were actually pulled into the game. Once the basic operations of the Shop
have been verified, its long term operations would need to be considered. These tests might include
observing the Shop as the player plays more of the game and completes it or as modifications are made
to the player's save file, like starting a new game. The Shop’s behaviour under these conditions would
need to be explored and defined later in testing. The best way to perform this sort of examination
would be during actual play testing.

Chosen Implementation

Due to the fact that it was now possible to implement the Persistent Shop within the provided time
we chose this approach and implemented it.

Use Cases

Change Shop
Move Key

Open Shop

Use Shop Move

Player
Reset Shop

i

Select Shop ltem

[

Figure 6: Use case diagram of the player’s possible intentions while using the Persistent Shop

Unlike the use case diagram for the SuperTux game from assignment 1, which featured an editor
primary actor, the Shop use case diagram only has one actor named player because the Shop is only
accessible in Story Mode. The player actor's possible intentions when interacting with the Shop are
as follows.

e Buying an item is done through the Shop Menu which is accessible through the world map.
Purchases can be made by selecting the desired menu option while in possession of a sufficient
supply of coins.

e The button used for the player's currently selected Shop Move can be set in the main menu by
setting the Shop Move in either the keyboard configuration menu or the joystick configuration
menu.

e The Shop can be opened by pressing the escape key while in Story Mode and at the world map
and then selecting Shop from the menu.

10

e During normal gameplay, the player can press their configured Shop Move button in order use
the Shop Move they currently have selected.

e If the player wishes, the Shop can be reset such that no items have been purchased. This option
is available from the Shop Menu.

e Finally, the player can select which Shop Item they would like to use during gameplay, if multiple
items of that type are purchasable. The currently selected item can be deselected if it is selected.
Selection and deselection of Shop Items can be done using the Shop Menu.

Sequence Diagrams

Sequence Diagram: Saving the Shop

Saving the Shop

A save is triggered and the shop is written the player's save file

Game Logic ‘ Shop ‘ ‘ Core Systems ‘

Savegame::save{i
Shop:current()
-
shop
Legend <l 9
Function Call Shop:write(writer) N
¥
_—

Writer::write(itemMName1, itemOwned1 L
Function Return *

q ________ Fo) Writer::write(itemName2, itemOwn edzg=

Writer:write("cosmetic”, currentCosmetic)
Component ¥

Writer:write("fireball”, currentFireballSound)
I
¥

Figure 7: Sequence diagram of the game saving the shop during its saving process.

When the Savegame object in the Game Logic subsystem receives a request to save the game
it first writes the information related to the player, such as the bonus that they currently hold and
the number of coins they have, and the game state, including information about level clear times and
discovered secret areas. Only once this has been done does the Savegame send a request to the Shop
Currenton in order to get a reference to the current Shop. After getting this reference it passes a
Writer object to the current Shop so that it can use it to write information about the state of the
Shop to the save file. The Shop does this by requesting that the Writer perform a write operation on
two arguments, a string, either the item's name or the name of a Shop variable, and a value associated
with the string, be it another string, a boolean, or a numeric value. In the case of Shopltems, the
item's name and a boolean corresponding to whether it is owned are stored. In the case of a Shop
variable, such as the currently equipped cosmetic, the name of the field is stored along with the field's
value, possibly an enumerated identifier or a file path. Once all of the Shop's information has been
written the Savegame is free to finish writing the save file and conclude saving.

11

Sequence Diagram: Buying a New Item

Buying a New ltem

The player uses the shop menu to buy a new item

‘ Shop ‘ Game Logic

ShopMenu::menu_action(
menafterm) *
WorldMap::current{) .
i
worldmap
Legend <l 9
Function Call Savegame::get_player_status()
5
[-
layer status
Function Return A RREEEEEE Payerstalls . 0
<= O Menultemn::id
3
Compaonent
P O PE— MNID_FLIP . 4
PlayerStatus::add_coins(-flipPrice)
e
B

Figure 8: Sequence diagram of the player using the Shop Menu to buy a new item.

Upon receiving a menu selection from the menu system, the ShopMenu needs to collect several
pieces of information about the context of the request. It first requests a reference to the current
Worldmap object from the Worldmap Currenton. Using this new reference, it is able to get the
currently loaded save file in order to access the PlayerStatus object. However, before it can make use
of this PlayerStatus it needs to discern which menu item has been selected. It does this by getting the
ID attribute from the Menultem object and uses it as the argument of a switch to select the correct
menu option. Once the case has been selected the desired item is purchased from the Shop, the price
of the item is subtracted from the number of coins in the Savegame's PlayerStatus object.

Risks

Because our chosen implementation of the Shop required modifications of how the game saves
the player's progress, these changes could introduce errors into the pre-existing save process which
could have unforeseen side effects on the player's save file. So far, this has not been the case and
we do not anticipate that any changes to how saving the game is handled in SuperTux could cause
the player's save data to be corrupted by the Shop; however, we do not know all of the details of
the implementation of the save feature, nor do we know all of the details of the operations of its
dependencies, and we could not possibly know what future changes might be made to this system. In
any event, we believe that the risk of adding this feature to the game, in its current form, is minimal
if not risk free.

Implementation Process & Reflection

Concurrency

Our implementation of the Shop did not require the concurrent execution of any processes. In
fact, most of the function calls to the pre-existing subsystems are required to return in order for

12

execution of the Shop's functions to finish. There are, of course, items in the Shop that have effects
on processes that require some concurrent execution, such as playback of the sound asset Shop Items
during gameplay, but the Shop does not reference these function directly. At all times the Shop is
either initializing itself or getting and setting variable values, all of which have no greater than linear
complexity and can therefore be expected to return quickly and without the use of other threads.

Team Issues

One possible issue that the development team might have with our Shop is how to handle it in
the future. Since the development team did not create the Shop, they would not be familiar with how
it functions. This means that they would not be familiar with how their code is used to create the
Shop. If changes or updates to the game change the functionality of some code that is used in the
Shop, it could change the functionality of the Shop in ways that were not expected or even render it
useless.

Another possible issue would be with the gameplay. Something developers of a game need to keep
in mind is how the game is balanced. That is, making sure the game is not too hard and not too
easy. Introducing a shop as a way to get powerups would be an easy way to ruin the balance of the
game and is something that needs to be carefully changed to be completely fair for the player. This
is also the case with the new moves we are introducing. These moves were something the developers
never planned for the player to use in gameplay and were more likely to be used in alterations made
to a level. Giving the player the ability to use these moves would make levels much easier to beat.
An example of this can be seen in using the FlipLevel Transformer. This move can be repeatedly used
in quick succession to let the player effectively fly across the level. Some solutions to this are making
the price for moves and powerups expensive enough that buying them is not trivial, or changing the
functionality of the moves in a way that prevents the player from abusing them.

Another issue that we did not really expect was the lack of tested and known code. Since the
original superTux developers abandoned the project for a while[1], and the current development team
did not work on the original project, a lot of the old and outdated code is unknown or untested. This
could create issues when working around our Shop due to not being able to foresee how these unknown
pieces of code will interact with our Shop, especially if they are updated to newer code.

Limitations of Reported Findings

Our original approach on the development of the Shop was to have it included in the main menu.
From the main menu, the player would be able to access the Shop and purchase any of the items,
given they have the correct number of coins. After some consideration, we realised that this approach
would not work and we had to find a new way to implement it.

Another snag we hit was the ability to add new moves to the game and Shop. These new moves
would function in the same way as the Flip move does, although they would have different effects. As
mentioned earlier, the flip move was something that already existed in the code through FlipLevel-
Transformer and we added the ability for the player to use it in game. It would be possible to create
more level transformers to be used in game, however due to how the game was coded, making these
new transformers would take a significant amount of time and effort. Due to these issues, making new
transformers may not be worth it.

Lessons Learned

Throughout our work in the enhancement proposal we came across various different ways that
we could have implemented the Shop. Some of the approaches we considered were far too complicated,
and some were lacking features we wanted. However, what we learned during our work was that there
were many more approaches that we did not consider much, or even at all. There is very likely a way
to implement our Shop, and future features, such that the number of affected subsystems is reduced.

13

Another lesson we learned through considering a wide variety of implementations is that NFRs
do not always make the process of choosing an implementation easier. Some approaches may have
advantages and disadvantages of similar magnitude as a completely separate approach, even if the
two approaches do not share the NFRs for their pros and cons. For example, an approach may have
more functionality, but would also require more work to implement while another approach might be
easier to implement but might be unstable or of lower quality.

Another thing we have learned is that sometimes feasibility is the most important requirement. If
we start to focus on an implementation that has a low feasibility, it could very easily end up as wasted
time and effort. The feasibility of an approach is one of the first things that should be considered
before putting too much time in it, and was in fact one of the major reasons why we did not initially
try to follow the Persistent Shop approach.

14

References

[1] Tobias Markus.
”Obstacles”.
Accessed December 1, 2017.
https://github.com/SuperTux/supertux/wiki/Obstacles.

[2] Wikipedia.
”Singleton Pattern Wikipedia Page.”
Accessed November 27, 2017.
https://en.wikipedia.org/wiki/Singleton_pattern.

Dictionary

Player Status - An object managed by SuperTuxs Game Logic systems to store information about the
current state of the player. It stores information such as which bonus the player currently
has and how many coins they possess.

Shop - The system which we have proposed to implement.

The name of the object which manages the purchasing, retention, and selection of Shop
Items.

Shop Item - An item made purchasable in the Shop. Could refer to a cosmetic, a sound, a move, or
a bonus.

The name of the object which is stored in a collection by the Shop, used to manage infor-
mation about which items the player has bought.

Shop Move - A special move made purchasable in the Shop.

The button used to trigger the Shop Move can be set in the appropriate input configuration
menu. In game, if the Shop Move is used, it will perform some action such as inverting
everything in the level or allowing Tux to jump a second time during a normal jump.

Shop Menu - The menu, which is available through the world map menu, where the player can purchase
Shop Items from the Shop.

The object which is responsible for receiving requests from SuperTuxs menu system, making
purchases and selections in the Shop, and applying changes to the Player Status object such
as charging the player for purchases or giving Tux a bonus.

15

